A SIMPLE ROUTE TO THE KEY INTERMEDIATE OF 18-METHYLTHIENAMYCIN

A V Rama Rao^{*}, M K Gurjar and B Ashok Indian Institute of Chemical Technology, Hyderabad 500 007, India

(Received 19 March 1991)

Abstract: A short and straightforward synthetic strategy towards the key intermediate 2 of 1β -methylthienamycin has been described.

l β -Methylthienamycin (1), a totally synthetic analogue of the naturally occurring antibiotic, thienamycin, is being promoted as a viable substitute of thienamycin because of its sustained chemical and metabolic stabilities¹. The recent synthetic tactics² towards 1 or the key intermediates (2 or 3a) are now being mobilised in developing such strategies that are capable of producing 1 in large quantities and involve cheap and accessible chemicals. We now report a short and straightforward approach to 3a and 2, established³ intermediates of 1.

The commercially available (S)-methyl 3-hydroxy-2-methyl propionate (4) whose chiral carbon represented C-1 of 1, was chosen as a starting material⁴. The derived TBS derivative 5 was reduced with DIBAL-H at -78°C and the resulting aldehyde (6) was immediately subjected to two carbon homologation⁵ with carbethoxymethylenetriphenylphosphorane (85%). The E-geometry of the newly formed α , β -unsaturated ester 7 was confirmed by ¹H-NMR spectrum. Subsequent conjugate addition reaction⁶ of 7 with benzylamine in refluxing methanol occurred efficiently giving a chromatographically separable mixture of **8a** and **8b** in the ratio of 7:3 (70%, 90% based on recovered 7). Both the products were independently transformed into the corresponding β -lactam derivatives. Thus, the faster moving product (**8a**) was hydrogenolysed over Pd-C and subsequently cyclized with tert-butylmagnesium chloride to give the β -lactam derivative (**9a**) (80%). Treatment² of **9a** with 1N HCl in methanol followed by isopropylidination with dimethoxypropane-BF₃:OEt₂ resulted in the formation of **3a** [α]_D +37 (c 1.18, CHCl₃), lit.² +34.6 (c 0.5, CHCl₃) in almost quantitative yields. The structure of **3a** was further confirmed unambiguously by the ¹H-NMR spectrum in which the characteristic⁷ chemical shifts and coupling constants for C₅-methyl, H-4 (axial), H-4 (equitorial) and H-5 (equitorial) were in conformity with the structure.

Transformation of **8b** into the β -lactam derivative **3b** was carried out by successive debenzylation, cyclisation and isopropylidination reactions as described above. The structure of compound **3b**[[α]_D +22 (c 0.8, CHCl₃)}was confirmed⁸ by the ¹H-NMR spectrum (Scheme 1)⁹.

Conversion of **3a** into the key intermediate **2** was already demonstrated² in these laboratories (Scheme 2).

IICT Communication No.2799

a) TBS-Cl, imidazole, CH_2Cl_2 , 2h; b) DIBAL-H, CH_2Cl_2 , -78°C, 15 min; c) $Ph_3P=CHCO_2C_2H_5$, CH_2Cl_2 , RT, 8h; d) $PhCH_2NH_2$, MeOH, reflux 36h; e) i. Pd-C, MeOH, H_2 , 5h; ii. TMS-Cl, Et₃N, ether; iii. t-BuMgCl, ether, RT, 18h; f) i. 1N HCl, MeOH, RT, 1h; ii. $Me_2C(OME)_2$, $BF_3:OEt_2$, CH_2Cl_2 , 15 min.

-References:

- 1. Shih, D.H.; Baker, F.; Christensen, B.G.; Heterocycles, 1984, 21, 29.
- a) Rama Rao, A.V.; Gurjar, M.K.; Khare, V.B.; Ashok, B.; Deshmukh, M.N.; Tetrahedron Lett., 1990, 31, 271; b) Noyori, R.; Yi Hsiao, N.; Kitomura, M.; Tetrahedron Lett., 1990, 31, 549 and references cited therein.
- 3. Christensen, B.G.; Bouffard, F.A.; J. Org. Chem. 1981, 46, 2208.
- 4. Kawabata, T.; Kimura, Y.; Ito, Y.; Teroshima, S.; Sasaki, A.; Sunagawa, M.; Tetrahedron, 1988, 44, 2149.
- 5. Nagaoko, H.; Kishi, Y.; Tetrahedron, 1981, 37, 3873.
- 6. Hauser, F.M.; Ellenberger, S.R.; Chem. Rev., 1986, 86, 35.
- 7. Gennari, C. and Cozzi, P.G. Tetrahedron, 1988, 44, 5965.
- Shih, D.H.; Fayter, J.A.; Cama, L.D.; Christensen, B.G.; Hirshfield, J.; Tetrahedron Lett., 1985, 26, 583.
- Compound 3b would be an interesting intermediate to prepare 1 β-methylthienamycin analogue.